n阶矩阵的转置公式?
单位矩阵是个方阵,n阶单位矩阵即n行n列,从左上角到右下角的对角线(称为主对角线)上的元素均为1,除此以外全都为0,很显然其转置就是其本身。
在矩阵的乘法中,有一种矩阵起着特殊的作用,如同数的乘法中的1,这种矩阵被称为单位矩阵。它是个方阵,从左上角到右下角的对角线(称为主对角线)上的元素均为1。除此以外全都为0。
扩展资料:
根据单位矩阵的特点,任何矩阵与单位矩阵相乘都等于本身,而且单位矩阵因此独特性在高等数学中也有广泛应用。
设A是n阶可逆矩阵,求其逆矩阵。
一般的思想,同学们会先求出
,再利用
进行求解,这种方法算起来较麻烦且易出错。
可以利用
,即把n阶单位炬阵I在A的右边,得到一个nx2n矩阵,然后对这一矩阵施行行初等变换,使得前n列变为I,这时后n列就化为
了。
如果不知A是否可逆,也可用这种方法做,只要nX2n矩阵经行初等变换左边的nxn那一块中有一行(列)的元素全为0,则A不能经过初等变换化为单位矩阵,即A不可逆。
觉得有用点个赞吧
矩阵的转置怎么求?
矩阵的转置是指将矩阵的行与列对换得到的新矩阵。
假设有一个m行n列的矩阵A,转置后得到一个n行m列的矩阵A^T。
如果A的元素为a[i][j],那么A^T的第i行第j列元素为a[j][i]。
例如,对于2行3列的矩阵A:
A = [a11, a12, a13]
[a21, a22, a23]
其转置矩阵A^T为:
A^T = [a11, a21]
[a12, a22]
[a13, a23]
三阶矩阵的转置公式?
矩阵转置公式:(A^T)^T=A,(A+B)^T = A^T + B^T,(AB)^T = B^T*A^T。矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。
矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。
最重要的一个公式,其余的每个都可以用这个来推导已知Y = AXB Y = A*X*BY=AXB那么有对X求导,公式(1)d Y d X = A TB T \frac{dY}{dX} = A^T*B^TdXdY=ATBT和对X T X^TXT求导,公式(2)d Y d X T = BA \frac{dY}{dX^T} = B*AdXTdY=BA下面我们来举例:
如果要计算Y = XB Y = X*BY=XB中,d Y d X \frac{dY}{dX}dXdY的值,我们可以令A = E A =EA=E代入公式(1),有d Y d X = B T \frac{dY}{dX} = B^TdXdY=BT其他计算同理。有一个小窍门,平时在推导的时候,可以根据矩阵的行列数来判断。具体的规律可以自己私下尝试。
矩阵a的逆矩阵的转置?
等于,因为A的转制乘A逆的转制=(A逆乘A)的转制=E的转制=E,所以A的转制的逆等于A逆的转制。
设A为m×n阶矩阵(即m行n列),第i 行j 列的元素是a(i,j),即:A=a(i,j)
定义A的转置为这样一个n×m阶矩阵B,满足B=b(j,i),即 a(i,j)=b (j,i)(B的第i行第j列元素是A的第j行第i列元素),记A'=B。(有些书记为 Aᵀ=B,这里T为A的上标)
当A是方阵时正确.结论: 若n阶方阵A,B满足 AB=E, 则A,B可逆, 且A^-1=B, B^-1=A.由于 A^TA=E
所以 A^T = A^-1.
扩展资料:
性质定理
1.可逆矩阵一定是方阵。
2.如果矩阵A是可逆的,其逆矩阵是唯一的。
3.A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
4.可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)
5.若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
6.两个可逆矩阵的乘积依然可逆。
7.矩阵可逆当且仅当它是满秩矩阵。