c语言牛顿迭代法是什么
牛顿迭代法:
牛顿迭代法(Newton's method)又称为牛顿-拉弗森方法(Newton-Raphson method),它是一种在实数域和复数域上近似求解方程的方法。方法使用函数的泰勒级数的前面几项来寻找方程的根。#include<stdio.h>
#include<math.h>
int a,b,c,d;
float f(float x)
{ float y;
y=((a*x+b)*x+c)*x+d;
return(y);
}
float f1(float x)
{ float y;
y=(3*a*x+2*b)*x+c;
return(y);
}
void main()
{ float x0=1.0,x1;
printf("请输入a,b,c,d的值:\n");
scanf("%d,%d,%d,%d",&a,&b,&c,&d);
x1=1;
do
{
x0=x1;
x1=x0-f(x0)/f1(x0);
}
while(fabs(x1-x0) >=0.00001);
printf("%f",x1);
}
#include<stdio.h>
#include<math.h>
int a,b,c,d;
float f(float x)
{ float y;
y=((a*x+b)*x+c)*x+d;
return(y);
}
float f1(float x)
{ float y;
y=(3*a*x+2*b)*x+c;
return(y);
}
void main()
{ float x0=1.0,x1;
printf("请输入a,b,c,d的值:\n");
scanf("%d,%d,%d,%d",&a,&b,&c,&d);
x1=1;
do
{
x0=x1;
x1=x0-f(x0)/f1(x0);
}
while(fabs(x1-x0) >=0.00001);
printf("%f",x1);
}
牛顿迭代法(Newton's method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。
牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程 的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。另外该方法广泛用于计算机编程中。
牛顿迭代公式基本步骤
牛顿迭代公式的基本步骤如下:
1. 确定迭代函数:首先需要确定迭代函数,通常表示为f(x)。这个函数可以是任意的数学函数。
2. 选择初始值:选择一个初始值x₀作为迭代的起点。
3. 计算递推关系:使用迭代函数,计算下一个逼近值x₁,即x₁=f(x₀)。
4. 迭代计算:将x₁作为新的逼近值,再次计算下一个逼近值x₂,即x₂=f(x₁)。重复这个过程,直到满足所需的精度或者达到设定的最大迭代次数为止。
5. 判断收敛性:对于迭代函数的选择,需要判断迭代序列是否收敛。如果收敛,则得到近似解;如果发散,则需要尝试其他的迭代函数。
6. 输出结果:输出最终的近似解,或者无解(如果迭代过程发散)。

