c语言牛顿迭代法是什么
牛顿迭代法:
牛顿迭代法(Newton's method)又称为牛顿-拉弗森方法(Newton-Raphson method),它是一种在实数域和复数域上近似求解方程的方法。方法使用函数的泰勒级数的前面几项来寻找方程的根。#include<stdio.h>
#include<math.h>
int a,b,c,d;
float f(float x)
{ float y;
y=((a*x+b)*x+c)*x+d;
return(y);
}
float f1(float x)
{ float y;
y=(3*a*x+2*b)*x+c;
return(y);
}
void main()
{ float x0=1.0,x1;
printf("请输入a,b,c,d的值:\n");
scanf("%d,%d,%d,%d",&a,&b,&c,&d);
x1=1;
do
{
x0=x1;
x1=x0-f(x0)/f1(x0);
}
while(fabs(x1-x0) >=0.00001);
printf("%f",x1);
}
#include<stdio.h>
#include<math.h>
int a,b,c,d;
float f(float x)
{ float y;
y=((a*x+b)*x+c)*x+d;
return(y);
}
float f1(float x)
{ float y;
y=(3*a*x+2*b)*x+c;
return(y);
}
void main()
{ float x0=1.0,x1;
printf("请输入a,b,c,d的值:\n");
scanf("%d,%d,%d,%d",&a,&b,&c,&d);
x1=1;
do
{
x0=x1;
x1=x0-f(x0)/f1(x0);
}
while(fabs(x1-x0) >=0.00001);
printf("%f",x1);
}
牛顿迭代法(Newton's method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。
牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程 的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。另外该方法广泛用于计算机编程中。
c语言如何求根
您可以使用以下方法来求解C语言中的根:
1. 二分法:这是一种常见的求解方程根的方法。它的基本思想是将方程的根逼近为一个特定的值,然后通过不断地缩小这个值的范围来逼近方程的根。
2. 牛顿迭代法:这是一种基于函数导数的迭代方法,它可以用来求解非线性方程的根。

