堆排序是一种稳定的排序方法吗?
是不稳定的排序算法
堆排序
我们知道堆的结构是节点i的孩子为2*i和2*i+1节点,大顶堆要求父节点大于等于其2个子节点,小顶堆要求父节点小于等于其2个子节点。
在一个长为n 的序列,堆排序的过程是从第n/2开始和其子节点共3个值选择最大(大顶堆)或者最小(小顶堆),这3个元素之间的选择当然不会破坏稳定性。但当为n /2-1, n/2-2, ...1这些个父节点选择元素时,就会破坏稳定性。
有可能第n/2个父节点交换把后面一个元素交换过去了,而第n/2-1个父节点把后面一个相同的元素没 有交换,那么这2个相同的元素之间的稳定性就被破坏了。所以,堆排序不是稳定的排序算法。
为什么堆排序只有一个辅助单元?
设有n个待排序的记录关键字,则在堆排序中需要1个辅助记录单元。
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。
堆排序只需要一个辅助单元是因为它是一种原地排序算法,不需要额外的空间来存储排序结果。堆排序通过构建最大堆或最小堆来实现排序,堆的结构可以直接在原始数组上进行操作,不需要额外的空间。
在排序过程中,只需要一个辅助单元来交换堆顶元素和当前待排序元素,然后调整堆结构即可。这种设计使得堆排序具有较小的空间复杂度,适用于大规模数据的排序。
在快速排序、堆排序、归并排序中,什么排序是稳定的?
归并排序是稳定的“快速排序和堆排序都不稳定.不稳定:就是大小相同的两个数,经过排序后,最终位置与初始位置交换了。
快速排序:27 23 27 3以第一个27作为pivot中心点,则27与后面那个3交换,形成3 23 27 27,排序经过一次结束,但最后那个27在排序之初先于初始位置3那个27,所以不稳定。
堆排序:比如:3 27 36 27,如果堆顶3先输出,则,第三层的27(最后一个27)跑到堆顶,然后堆稳定,继续输出堆顶,是刚才那个27,这样说明后面的27先于第二个位置的27输出,不稳定。”“2 归并排序(MergeSort)
归并排序先分解要排序的序列,从1分成2,2分成4,依次分解,当分解到只有1个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。”
以Ai与Aj为例子快速排序有两个方向,左边的i下标一直往右走,当a[i] <= a[center_index],其中center_index枢元素的数组下标,一般取为数组第0个元素。而右边的j下标一直往左走,当a[j] > a[center_indexij都走不动了,i <= j, 交换a[i]和a[j],重复上面的过程,直到i>j。
交换a[j]和a[center_index],完成一趟快速排序。在中枢元素和a[j]交换的时候,很有可能把前面的元素的稳定性打乱,比如序列5 3 3 4 3 8 9 10 11,现在中枢元素5和3(第5个元素,下标从1开始计)交换就会把元素3的稳定性打乱,所以快速排序是一个不稳定的排序算法,不稳定发生在中枢元素和a[j]交换的时刻。